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Abstract
Due to the highly complex semantic information of images, even with the same query image, the expected content-based
image retrieval results could be very different and personalized in different scenarios. However, most existing hashingmethods
only preserve one single type of semantic similarity, making them incapable of addressing such realistic retrieval tasks. To
deal with this problem, we propose a unified hashing framework to encode multiple types of information into the binary
codes by exploiting convolutional networks (CNNs). Specifically, we assume that typical retrieval tasks are generally defined
in two aspects, i.e. high-level semantics (e.g. object categories) and visual attributes (e.g. object shape and color). To this
end, our Dual Purpose Hashing model is trained to jointly preserve two kinds of similarities characterizing the two aspects
respectively. Moreover, since images with both category and attribute labels are scarce, our model is carefully designed to
leverage the abundant partially labelled data as training inputs to alleviate the risk of overfitting. With such a framework, the
binary codes of new-coming images can be readily obtained by quantizing the outputs of a specific CNN layer, and different
retrieval tasks can be achieved by using the binary codes in different ways. Experiments on two large-scale datasets show
that our method achieves comparable or even better performance than those state-of-the-art methods specifically designed for
each individual retrieval task while being more compact than the compared methods.
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1 Introduction

In recent years, more and more images are available on the
Internet, posing great challenges to retrieving images that are
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relevant to a given query image. Due to the high efficiency
in storage and computation, hashing has become increas-
ingly popular in such large-scale image retrieval tasks (Gionis
et al. 1999; Gong and Lazebnik 2011; Xia et al. 2014; Liu
et al. 2016a; Yang et al. 2015). The general idea of hash-
ing methods is to project images into binary codes, where
the similarity relationships between images are preserved in
the Hamming space. However, in real-world applications,
the expected retrieval results vary in different situations. For
instance, three typical personalized retrieval tasks are shown
in Fig. 1. Given the same query image on the left, one might
want to search for (i) photos of the same person (Liu et al.
2016a; Yang et al. 2015) (category retrieval); (ii) pictures that
are visually similar to the query image in terms of some spe-
cific visual attributes (Siddiquie et al. 2011; Scheirer et al.
2012) (attribute retrieval); (iii) photos of the same person
with additional specified visual attributes, e.g. smiling (com-
bined retrieval). Therefore, existing hashing methods, which
only preserve one specific kind of similarity, cannot satisfy
the numerous possible personalized expectations simultane-
ously.
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Fig. 1 Areal example showing the three retrieval tasks on a face dataset.
The top-ranked feedbacks of each task are shown here. In the first two
rows, exactly matched images are bounded by green boxes, and red
otherwise. In the last two rows, images of the same/different identity
are bounded by green/red boxes respectively, and the blue bars indicate
the confidence level of the corresponding attribute. Best viewed in color
(Color figure online)

One straightforward solution is to use multiple models,
where each model preserves one type of similarity. However,
such a solution could be very time-consuming in prac-
tice when the retrieval task at hand involves multiple types
of information (e.g. the last two rows in Fig. 1), and the
redundancies between different tasks might harm the stor-
age efficiency. To address this problem, we propose a unified
hashing framework, named Dual Purpose Hashing (DPH),
to simultaneously encode multiple types of information into
the binary codes. Specifically, we can see from Fig. 1 that the
expected retrieval results are typically defined by two aspects
of the image, i.e. high-level semantics (e.g. person identity
or object category) and mid-/low-level visual attributes (e.g.
gender or object shape and color), which can be abstracted
as “category” and “attribute” respectively. Therefore, unlike
existing hashingmethods that only preserve one specific sim-
ilarity relationship, the proposed DPH framework encodes
both category and attribute information into the binary codes,
as illustrated in Fig. 2.

Our basic idea comes from a very natural intuition that
category and attributes, as objects’ descriptions at differ-
ent abstraction levels, should share some common low-level
visual features. The successful applications of CNN models
in many computer vision tasks (He et al. 2016; Liu et al.
2019, 2020) have promoted more research works to investi-
gate the working mechanism of such models. Experimental
studies in some recent works (Escorcia et al. 2015; Zhong
et al. 2016; Bau et al. 2017) show that some nodes in the
CNN model trained for classification tasks are highly corre-
lated with visual attributes, which could partly confirm the
correctness of our basic idea. Such observations also suggest
that deep CNNmodel is a good choice to hierarchically cap-
ture the correlations between category and attributes. This
motivates us to adopt CNN models to learn unified binary
codes that can preserve both similarities simultaneously.
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Fig. 2 Illustration of the idea of our Dual Purpose Hashing method.
Unlike existing hashing methods that only preserve one kind of sim-
ilarity (e.g. category similarity or attribute similarity), our method
simultaneously preserves multiple types of similarity, making it appli-
cable for multiple realistic retrieval tasks

The framework of our DPHmethod is illustrated in Fig. 3.
To be specific, since directly learning binary codes in Ham-
ming space isNP-hard, our network adopts a binary-like layer
to approximate the real binary codes. By jointly optimizing a
category information encoding loss and an attribute predic-
tion loss, our method can encode both similarities into the
unified binary codes. Specifically, our method is compatible
with multiple different forms of losses, and thus two widely
studied forms for each loss are considered in our framework,
which will be detailed in the following sections. Moreover,
since most images available on the Internet do not have com-
plete category and attribute labels and labelling them could
be very costly, our loss function is properly designed to take
into account such practical scenarios. Namely, each loss only
takes imageswith the corresponding labels as training inputs,
and thus even images with only one label can contribute to
the model learning. By doing so, an additional benefit is that
the network has the capacity to see a large amount of partially
labelled data in the training stage, and thus greatly reduces
the risk of overfitting.

Once the model training is done, images can be indexed
by quantizing the outputs of the binary-like layer to com-
pact hash codes. In the category retrieval task, retrieval can
be done similarly to existing hashing methods by utilizing
Hamming distance ranking or hash table lookup. For the
other two tasks (attribute retrieval and combined retrieval),
the attribute information of each image can be efficiently
recovered from the binary codes and is utilized to perform
the retrieval tasks accordingly. Compared with directly stor-
ing the attribute information, our method only incurs a little
increase in computational cost, while dramatically reduces
the storage space cost.

The main contributions of this work are threefold: First,
we present a unified framework to learn hash functions that
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Fig. 3 The framework of our DPH method. To simultaneously encode
category and visual attributes of images into binary codes, we devise a
CNNmodel that can take partially labelled images as training input (step
1), and train the model on classification/metric learning and attribute

prediction tasks (step 2). The binary-like output layer, which has k (the
code length) nodes, is connected to the two task layers as input. To
produce real binary codes, images are propagated through the network
(step 3), and the binary-like network output is quantized (step 4)

simultaneously preserve category and attribute similarities
for addressing multiple retrieval tasks. Second, we show that
by jointly preservingmultiple types of similarities, themodel
canmake use of the rich relationships between different tasks
to suppress the redundancies and learn more compact binary
codes than learning multiple models separately. Third, we
propose a new training scheme for the CNN models that can
take partially labelled data as training inputs to improve the
performance and alleviate overfitting.

Preliminary results of the proposedmethodhavebeenpub-
lished in Liu et al. (2017). Compared with the conference
version, this paper has made four major extensions: First,
we generalize our framework to be compatible with more
loss functions (e.g. triplet ranking loss and hinge loss) that
have been widely adopted in hashing methods, and exten-
sively evaluate their performances on our tasks. Second, we
adjust the evaluation metrics on the attribute-related tasks
to better take into account the sample imbalance problem.
Third, more experiments are conducted to give more insight
into our proposed framework, including modifying the net-
work architecture to better cope with the multiple retrieval
tasks at different abstraction levels, more detailed analysis of
the functionality of each binary bit in different retrieval tasks,
and comparison with more state-of-the-art methods. Fourth,
we extend the implementation details of our method, includ-
ing the exact process of different retrieval tasks, to make it
easier for re-implementation.

The rest of the paper is organised as follows: Sect. 2 dis-
cusses the works related to our method. Section 3 describes
our DPH method in detail. Section 4 extensively evaluates
the proposed method on two large-scale datasets, followed
by conclusions in Sect. 5.

2 RelatedWorks

In this paper, we aim at learningmultifunctional binary codes
for multiple realistic image retrieval tasks. Therefore, our
work is naturally related to the multi-task learning problem.
Specifically, some previous works, e.g. (Sun et al. 2014;
Liu et al. 2016b; Kokkinos 2017; He et al. 2017; Zamir
et al. 2018; Cao et al. 2018a), have adopted CNN mod-
els to simultaneously deal with multiple different tasks, and
have achieved some successes. The benefits of such multi-
task learning methods are twofold: First, by making use of
the relations between tasks, one might be able to improve
the performance of one or more task(s). Second, by shar-
ing the feature extraction pipeline of multiple tasks, such
multi-task learning methods consume less computation and
memory than using one model for each individual task, and
thus have their advantages in resource-limited situations, e.g.
on smartphones or self-driving cars. Considering that large-
scale image retrieval tasks have very strict requirements on
time and storage,we borrow the idea frommulti-task learning
methods to learn compact binary codes for simultaneously
dealing with multiple realistic retrieval tasks, which can sig-
nificantly reduce the number of models and thus decrease
retrieval time. Compared with the above methods, the key
difference in representations (real-valued vs. binary) enables
ourmethod tobetter satisfy the strict timeand storage require-
ments of large-scale image retrieval tasks.

In the past fewyears, hashing (Gionis et al. 1999;Kulis and
Darrell 2009; Wang et al. 2012; Gong and Lazebnik 2011;
Norouzi and Fleet 2011; Liu et al. 2012; Xia et al. 2014; Lai
et al. 2015; Liu et al. 2016a; Zhang et al. 2016; Cao et al.
2017; Yang et al. 2015) has been widely studied for large-
scale retrieval tasks for its low time and space complexity.
The pioneering data-independent hashing method Locality
Sensitive Hashing (LSH) (Gionis et al. 1999) uses random
projections to produce binary bits, and thus LSH usually
requires long codes to achieve satisfactory retrieval perfor-

123



2226 International Journal of Computer Vision (2020) 128:2223–2242

mance. To reduce the storage cost, data-dependent hashing
methods are proposed to learn more compact binary codes
by utilizing a given training set. Such methods can be further
divided into unsupervised and (semi-)supervised. Unsuper-
visedmethods, e.g. Spectral Hashing (SH) (Weiss et al. 2008)
and Iterative Quantization (ITQ) (Gong and Lazebnik 2011),
only make use of unlabelled training data to learn hash
functions, while supervised methods are proposed to deal
with the more complicated semantic similarities by taking
advantage of semantic labels. Some representative super-
vised hashing methods are CCA-ITQ (Gong and Lazebnik
2011), Minimal Loss Hashing (MLH) (Norouzi and Fleet
2011), Semi-Supervised Hashing (SSH) (Wang et al. 2012),
Binary Reconstructive Embedding (BRE) (Kulis and Darrell
2009), and Supervised Hashing with Kernels (KSH) (Liu
et al. 2012). Although the aforementioned hashing methods
have achieved successes in some applications, they use the
readily extracted features,which are not specifically designed
for the task at hand, and thus might lose some task-specific
information. To tackle this issue, most recently, several hash-
ingmethods (Zhao et al. 2015; Lai et al. 2015;Xia et al. 2014;
Zhang et al. 2015; Liu et al. 2016a; Zhang et al. 2016; Cao
et al. 2017; Yang et al. 2015; Cao et al. 2018b, c; Jiang et al.
2018; Cakir et al. 2018) significantly improve the state of
the arts by jointly learning the image representations and the
hash functions using CNN models.

While the above supervised hashing methods mainly aim
at category-oriented retrieval task, attributes have also been
widely adopted in image retrieval (Sadovnik et al. 2013;
Kovashka and Grauman 2013; Scheirer et al. 2012; Kumar
et al. 2008; Tao et al. 2015; Turakhia and Parikh 2013; Raste-
gari et al. 2013; Yu et al. 2012; Siddiquie et al. 2011; Hu
et al. 2016; Long et al. 2018). Our work is most related to
the works that use nameable attributes (Parikh and Grauman
2011) as queries. Among these methods, (Kumar et al. 2008)
predicts the probability of attributes with SVM classifiers,
and uses the joint probabilities of query attributes to rank the
database images. Follow-up works investigate the usage of
attribute correlation (Siddiquie et al. 2011), fusion strategy
(Scheirer et al. 2012; Rastegari et al. 2013), relative attributes
(Sadovnik et al. 2013), natural language (Hu et al. 2016),
dominate attributes (Long et al. 2018), and other techniques
(Kovashka and Grauman 2013; Turakhia and Parikh 2013) to
improve the retrieval performance. In this paper, we adopt the
retrieval strategy in Kumar et al. (2008) for simplicity, while
those more complicated ones (Siddiquie et al. 2011; Scheirer
et al. 2012; Rastegari et al. 2013) are also compatiblewith our
framework. A major issue of these attribute-oriented image
retrieval methods is the usage of real-valued features, which
limits the scalability and efficiency of suchmethods. Another
line of research learns cross-modal binary codes to align sam-
ples of different modalities, e.g. images and texts (Jiang and
Li 2017; Liu et al. 2015; Deng et al. 2018; Liu et al. 2014;

Yang et al. 2017). Such methods are able to learn the cor-
respondences between images and attributes. However, such
methods usually treat the different modalities as a whole (i.e.
all attributes form an attribute modality), and it is difficult to
retrieve images based on a user-specified small part of the
other modality (e.g. retrieve by a single attribute).

Some recent works (Rastegari et al. 2012; Liu et al. 2013;
Li et al. 2015; Huang et al. 2016; Veit et al. 2017; Al-Halah
et al. 2018) have made early attempts to learn image repre-
sentations that are capable of dealing with multiple retrieval
tasks. Rastegari et al. (2012) and Huang et al. (2016) dis-
cover attributes from learned binary codes by visualizing the
images with the highest and lowest scores at each bit. This
“post-processing” manner, however, hinders the method to
learn the desired nameable attributes, thus making (Raste-
gari et al. 2012; Huang et al. 2016) unsuitable to be used for
attribute-oriented retrieval tasks. Li et al. (2015) improves
Rastegari et al. (2012) by explicitly modelling the connec-
tion between hash bits and attributes in the binary code
learning stage.Nevertheless, the simple linear transformation
based on the manually selected image representations in Li
et al. (2015) is inadequate to capture the complex correlation
between category and attributes. Veit et al. (2017) and Al-
Halah et al. (2018) only learn real-valued representations that
encode both types of information, which have high demands
for both storage and computation cost. Moreover, the bit
selectionmethodproposed inLiu et al. (2013) could select the
most useful hash bits for a selected retrieval task. However,
this method could only select from the readily available hash
bits, and there is no guarantee that the desired information is
encoded in the available bits. As a result, these methods are
suboptimal for dealing with large-scale image retrieval tasks.
To address the shortcomings of previous works, we propose
to exploit the CNN models to hierarchically capture the cor-
relation between these two semantic descriptions, and encode
them into compact binary codes in an end-to-end manner.

3 Approach

Our goal is to encode image information at different abstrac-
tion levels into unified binary codes, such that the learned
binary codes could be adopted to achieve different retrieval
tasks according to different users’ expectations.

To achieve this goal, we present a Dual Purpose Hashing
framework as illustrated in Fig. 3. The backbone network
consists of multiple convolution-pooling layers, and option-
ally followed by several fully connected layers. The structure
of these layers is very flexible, thus various successful mod-
els (Krizhevsky et al. 2012; Szegedy et al. 2015; He et al.
2016) can be adopted in our method. Since directly opti-
mizing the discrete binary codes in CNN models is difficult,
the penultimate layer in our network is designed to produce
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binary-like outputs (a fully connected layer with sigmoid
activation) to approximate the actual binary codes. During
the training stage, the whole network is jointly trained on a
category-related task and an attribute-related one to encode
both kinds of semantic information into binary codes. More-
over, the loss functions are specifically designed to make
use of the abundant partially labelled data on the Internet,
which can meanwhile improve the generalization ability of
the models, as shown in Sect. 4.2.2. The detailed designs of
each module will be introduced in the following subsections.

3.1 Problem Setup

Let Ω be the space of RGB images, we want to train an end-
to-end model that maps images fromΩ to k-bit binary codes
F : Ω → {0, 1}k , where the binary codes could be used
to perform multiple realistic retrieval tasks. In the following,
we will use boldface uppercase letters (e.g. A) and boldface
lowercase letters (e.g. a) to represent matrices and vectors
respectively, where Ai , Ai j , and ai denote the i-th row of A,
j-th element ofAi , and i-th element of a. Suppose that there
are C disjoint categories and p visual attributes defined on
the images. Let Str = {(Xtr

i , yi ,Ai )|i = 1, · · · , N } denote
the training set consisting of N images, where Xtr

i ∈ Ω ,
yi ∈ {1, · · · ,C,C + 1} denotes the category of the i-th
image, and Ai ∈ {0, 1, 2}1×p indicates the p correspond-
ing visual attributes. More concretely, yi = C + 1 means
the category label of the i-th image is unknown, Ai j = 1
and 0 indicates the j-th attribute is present/absent in the i-
th image respectively, and Ai j = 2 denotes that the j-th
attribute label of the i-th image is not given. To avoid unin-
formative samples, we only consider the case that at least
one label (either the category or one attribute) is given for
each training image. For the i-th training image Xtr

i , we
use Bi ∈ {0, 1}k to denote the corresponding k-bit binary
codes and Br

i ∈ [0, 1]k is the binary-like counterpart before
quantization, whereBi = 0.5∗sign(Br

i −0.5)+0.5. In prac-
tice, the sign function is non-differentiable, which makes it
intractable to optimize the CNN model via back propaga-
tion method. To deal with this problem, we use Br

i in the
training stage as an alternative. Moreover, assume that the
d-dimensional feature representation of Xtr

i extracted by the
CNN model is φ(Xtr

i ) ∈ R
d , the binary-like codes Br

i is
obtained by:

Br
i = σ(Whashφ(Xtr

i ) + bhash), (1)

where Whash ∈ R
k×d and bhash ∈ R

k denote the weight
matrix and bias terms that transform the feature representa-
tions to the binary-like codes, and σ(·) denotes the sigmoid
function.

(a) (b)

Fig. 4 Illustration of the two kinds of loss functions for encoding cate-
gory information. aThe softmax loss,where image samples are required
to be close to their corresponding classifier weight vector in terms of
inner product.bTriplet ranking loss, where the distance between similar
samples (yellow circles) should be smaller than the distances between
dissimilar samples (the center yellow circle, the blue circle, and the
green circle) by a margin m (Color figure online)

3.2 Category Information Encoding

Existing mainstream hashing methods preserve category
similarity mainly by two kinds of approaches, i.e. classifi-
cation and metric learning. In our method, both choices are
considered andwill be illustrated in the following subsection.

3.2.1 Classification Based Encoding

As a commonly adopted approach (Shen et al. 2015; Yang
et al. 2015), the basic idea of classification-based encoding is
that if a simple transformation (e.g. softmax classifier or lin-
ear regression, as shown in Fig. 4a) can recover the category
label from the binary codes, the category information would
have been encoded into the binary codes. In our method, we
borrow the above idea from previous works and use classi-
fication as a means of encoding category information into
binary codes. Note that in our situation, the category labels
of some training imagesmight bemissing, to avoid the risk of
misclassification of such images, we choose to simply ignore
them in the classification task. Thus we define the classifica-
tion loss of a single training image Xtr

i based on the widely
adopted softmax classification loss as follows:

Lcls
i = −

C∑

c=1

I{yi = c}log exp(Wcls
c Br

i + bclsc )
∑C

l=1 exp(W
cls
l Br

i + bclsl )
, (2)

where the superscript cls indicates classification, I{cond.}
is 1 when cond. is true and 0 otherwise, Wcls ∈ R

C×k and
bcls ∈ R

C denote the projection matrix and bias terms of the
softmax classifier respectively. For the casewhen yi = C+1,
namely, the category label of the i-th image is missing, for
all c ∈ {1, · · · ,C} we have I{yi = c} = 0, thus the loss and
gradient are both zeros, and those images without category
labels are naturally ignored in the classification loss.
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3.2.2 Metric Learning Based Encoding

Another widely studied approach for encoding category
information is to project the images to a feature space, in
which similar images are close to each other while dissimi-
lar images are far away (Lai et al. 2015; Liu et al. 2016a; Cao
et al. 2017). Specifically, images with same known category
labels are considered as similar and vice versa (i.e. images
with yi = C + 1 are ignored similarly as in Sect. 3.2.1). For
the i-th training image, a feasible way of defining the metric
learning loss based on image triplets (as shown in Fig. 4b) is
as follows:

Lml
i =

∑

yk �=yi

∑

y j=yi

max(DH (Bi ,B j ) + m

− DH (Bi ,Bk), 0)

, (3)

where the superscript ml stands for metric learning, m is a
margin parameter to control the strictness of the loss func-
tion, and DH (·, ·) denotes the Hamming distance between
the corresponding binary codes. As discussed in Sect. 3.1,
the discrete Bi and Hamming distance could raise a lot of
difficulty in optimization. Therefore, we relax Eq. (4) as fol-
lows:

Lmlr
i =

∑

yk �=yi

∑

y j=yi

max(DE (Br
i ,B

r
j ) + m

− DE (Br
i ,B

r
k), 0)

, (4)

where the superscript mlr denotes metric learning relaxed,
and DE (·, ·) denotes the Euclidean distance between sam-
ples.

Note that here we adopt the triplet rank loss as in Lai et al.
(2015) for preserving the category similarity. Besides, other
metric learning based loss functions (e.g. Liu et al. 2016a;
Cao et al. 2017) are also compatible with our framework,
and can be simply implemented by replacing the current loss
function with the aforementioned ones.

3.3 Attribute Encoding

To preserve attribute similarity, we adopt the similar idea to
Sect. 3.2.1, i.e. the attributes of images are encoded into the
binary codes by applying a transformation that can recover
the visual attributes from binary codes. Since the attributes
are binary in this work, for each of the p attributes, we define
the loss as a binary classification task. Taking into account the
imbalanced distribution of positive and negative samples on
each attribute, we consider two choices of the loss function
as described in the following, while other multi-label classi-
fication losses are also compatible with our framework.

(a) (b)

Fig. 5 Illustration of the two kinds of loss functions for encoding
attribute information. aTheweighted sigmoid cross entropy loss, where
misclassified samples of the smaller category (black circles) will be
severely punished, while misclassified samples of the larger category
(white circles) will only be slightly punished. b Hinge loss, where only
the samples that are not well-classified by the current model will be
punished (the rightmost white circle and the black circles)

3.3.1 Weighted Sigmoid Cross Entropy Loss

One choice is to formulate the binary classification task as
a binary logistic regression problem. To handle the missing
label case, the standard formulation of logistic regression is
modified to suit in our problem. Specifically, forAi j �= 2, the
j-th ( j ∈ {1, 2, · · · , p}) attribute prediction loss of a single
training image Xtr

i is defined as a modified cross entropy
loss:

Lsce
i j = −Ai j log(σ (Wattr

j Br
i + battrj ))

+ (1 − Ai j )log(1 − σ(Wattr
j Br

i + battrj ))
, (5)

where the superscript sce denotes sigmoid cross entropy,
Wattr ∈ R

p×k is the weights of the attribute predictor, and
battr ∈ R

p are the corresponding bias terms. While for
Ai j = 2, we simply define Lsce

i j = 0 to ignore such unla-
belled samples.

In practice, directly optimizing Eq. (5) would lead to
biased solution, since the distribution of some attributes are
highly imbalanced (i.e. for someattributes, only a tiny portion
of images have/do not have these attributes), even predicting
all images as negative/positive would result in a relatively
small loss. To alleviate the impact of sample imbalance, for
Ai j �= 2, we propose a weighted version of Eq. (5) instead
(as shown in Fig. 5a):

Lwsce
i j = −w

(p)
j Ai j log(σ (Wattr

j Br
i + battrj ))

+ w
(n)
j (1 − Ai j )log(1 − σ(Wattr

j Br
i + battrj ))

, (6)

where the superscript wsce stands for weighted sigmoid
cross entropy, and w

(p)
j and w

(n)
j are used to balance the

loss terms on positive and negative training samples. Specif-

ically, the weights w
(p)
j = N (n)

j

N (n)
j +N (p)

j

and w
(n)
j = N (p)

j

N (n)
j +N (p)

j

,
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where N (p)
j and N (n)

j are the numbers of samples that have
Ai j = 1 and Ai j = 0 respectively.

3.3.2 Hinge Loss

Another popular choice for dealing with the imbalanced
binary classification task is the hinge loss,which only focuses
on the samples that have not been correctly classified with a
largemargin, and thus can somehowavoid predicting all sam-
ples as a single category (as shown in Fig. 5b). For Ai j �= 2,
the corresponding hinge loss of the i-th sample on the j-th
attribute is defined as follows:

Lhinge
i j = max(1 − (2 ∗ Ai j − 1)(Wattr

j Br
i + battrj ), 0), (7)

where the superscript hinge stands for hinge loss. Without
loss of generality, assume that an attribute has much more
positive samples than negative ones. If the model predicts all
samples as positive, a certain percentage of positive samples
would have Lhinge

i j = 0 and all the negative samples would
have large losses, which reduces the number of effective pos-
itive samples and thus balances the positive and negative
samples.

3.4 Joint Optimization

With the loss functions defined above, the CNN model can
be trained with standard back propagation algorithm with
mini-batches. However, directly adding up the category loss
[Eqs. (2) or (4)] and attribute loss [Eqs. (6) or (7)] as the
overall loss function could be problematic. To be specific,
the values of the two types of losses might be in different
orders of magnitudes. Moreover, due to missing labels, the
loss corresponding to different attributes might also be in
different orders ofmagnitudes. As a consequence, some parts
of the loss might dominate and thus prevent the others from
functioning. To tackle this problem, different parts of the loss
function need to be scaled before added up. Suppose that in
each iteration, themini-batch consists ofn images, the overall
loss function on a mini-batch is defined as follows:

L =
∑n

i=1 L
cls
i∑n

t=1 I{yt ≤ C} + α

p∑

j=1

n∑

i=1

Lwsce
i j∑n

t=1 I{At j �= 2} , (8)

where α is a weighting parameter to control the relative
strength of the two loss terms. To train the model efficiently,
each training mini-batch is carefully sampled to make sure
that

∑n
t=1 I{yt ≤ C} > 0 and

∑n
t=1 I{At j �= 2} > 0, which

also helps avoid numerical issues. By substituting Lcls
i and

Lwsce
i j with Lmlr

i and Lhinge
i j , we can obtain four combina-

tions of the overall loss function, which will be evaluated in
Sect. 4. The gradients of Eq. (8) with respect to Br

i and the

model parameters (Wcls , bcls , Wattr , battr , Whash , bhash ,
and the parameters in φ(·)) can be easily computed using
standard derivation techniques, thus we do not bother to dis-
cuss them in detail.

3.5 Retrieval

After the training stage is over, the binary codes of images
can be similarly obtained as discussed in Sect. 3.1. For each
image in the database, its corresponding binary codes are
stored for further usage. In this subsection, we describe the
detailed retrieval process of the three retrieval tasks intro-
duced in Sect. 1.

Category retrieval: The goal of category retrieval task is
to search for database images with the same category label as
the query image. To achieve this goal, we first compute the
binary codes of the query image and the Hamming distances
between the query codes and the database codes. After that,
we rank the Hamming distances in ascending order and feed-
back the database images in the obtained order as retrieval
results.

Attribute retrieval: Attribute retrieval aims at retriev-
ing database images that match with the query image at
some user-selected visual attributes. For this task, we need
to recover the attribute information of database images from
their correspondingbinary codes,which canbe accomplished
by A = σ(WattrB + battr ). Note that thanks to the binary
nature of B, the matrix multiplications is equivalent to sim-
ply selecting and adding up some entries ofWattr according
to the indexes of non-zero entries in B, which is very effi-
cient in computation. Similarly, the attribute information of
the query image aq could also be computed in the same way.
To search for the matching images, we rank the database
images in descending order of P(Ai j = aqj ,∀ j ∈ Us) =∏

j∈Us
(I{aqj > 0.5}Ai j + I{aqj ≤ 0.5}(1 − Ai j )), where Us

is the set of attributes selected by the user. The above score
denotes the jointmatching probability of the query image and
the i-th database image on the selected subset of attributes.

Combined retrieval: The goal of combined retrieval task
is to search for database images with the same category label
as the query image, while having some certain attributes
specified by the user. To address this challenging task, we
first recover the attribute information as described above,
and filter out the database images that do not match with the
specified attributes (with attribute probability smaller than
0.5). After that, the remaining database images are ranked
in ascending order of Hamming distances similarly as in the
category retrieval task.

Compared to existing hashing methods that can only deal
with the category retrieval task, our method only takes a little
bit more memory for storing the attribute prediction parame-
tersWattr and battr . Besides, as discussed above, recovering
attribute information from binary codes could be very effi-
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Fig. 6 An illustration of the bit functionality in existing hashing meth-
ods and our DPH method. Most existing hashing methods only encode
category information (left of the figure), while our DPH method jointly
encodes category and visual attribute information (right of the figure).
In the top part of this figure, each rectangle represents a bit, where the
areas of yellow and blue regions denote the amount of category infor-
mation and attribute information carried by that bit respectively, and the
words linked to the yellow and blue regions serve as an informal illus-
tration of the information encoded by that bit. In the bottom part, two
example images are provided to better explain the above idea (Color
figure online)

ciently done. Therefore, our method is as efficient as existing
hashing methods, while it can perform more retrieval tasks
with only one model.

3.6 Analysing Bit Functionality

In most existing hashing methods, only category informa-
tion is encoded into the binary codes, while in our method,
both category and visual attribute information are encoded, as
shown in Fig. 6. To give more insights into how the two types
of information (i.e. category and attributes) are encoded into
the binary codes in our method, we propose a novel method
to analyse the contribution of each bit to the two aspects.

For the category information, our basic intuition is that
if a certain bit has small within-class variations and large
between-class variations, it is highly likely that this bit
encodes a large amount of category information. Based on
this intuition, for the k-th bit, we compute

Icatk = −
∑

yi=y j

(Bik − B jk)
2 + λ

∑

yi �=y j

(Bik − B jk)
2 (9)

as an indicator of the category information amount carried

by the corresponding bit, where λ =
∑

i, j I{yi=y j }∑
i, j I{yi �=y j } is adopted

to balance the two terms.
On the other hand, for the attribute information, the abso-

lute value of Iattr , jk = Wattr
jk can indicate the contribution of

the k-th bit to the j-th attribute. Therefore, we use

Iattrk =
p∑

j=1

|Wattr
jk | (10)

as an indicator of the amount of attribute information carried
by the k-th bit, where |·| denotes the absolute value operation.

In practice, the above two metrics might be in different
orders of magnitudes, which makes it difficult to directly
compare them. To deal with this problem, we use their corre-
sponding maximums and minimums to normalize them into
the range of [0, 1].

Moreover, to quantitatively evaluate the alignment between
category and attributes, for the j-th attribute, we define

v j = −
∑

ys=yt

(As j − At j )
2 + λ

∑

ys �=yt

(As j − At j )
2 (11)

to denote the alignment between the j-th attribute and the cat-
egories, where λ is defined similarly as above. Specifically,
the larger this value is, the more aligned the j-th attribute is
with the categories. Similarly, v and Iattr , j are also normal-
ized into the range of [0, 1] to keep in line with the above
indicators. On the other hand, the Pearson’s correlation coef-
ficient cattrj = corr(Iattr , j , Icat ) reflects the relationship
between the j-th attribute’s information and the category
information encoded in the binary codes, the larger this value
is, the more likely that these two types of information are
encoded in the same bits. Naturally, we would expect that
attributes with large v values would also have large cattr val-
ues, whichmeans that the stronger an attribute is alignedwith
the categories, the more likely that this attribute’s informa-
tion is encoded in the same bits as the category information.
Experiments in the following section will show that DPH
performs exactly as expected.

4 Experiments

In this section, we extensively evaluate our method on two
large-scale datasets. First, we analyse the effect of individual
modules of our framework. Then the proposed DPH method
is compared with the state-of-the-art retrieval methods on
each of the three tasks to validate the advantages of our
method. Compared with the preliminary results reported in
Liu et al. (2017), the comparative methods are very care-
fully tuned to produce better results, and all attribute-related
experiments are re-evaluated using some more suitable met-
rics, which will be detailed in the following subsections.

4.1 Experimental Settings

Datasets: We evaluate our DPH method on two large-scale
partially labelled datasets: (1) ImageNet-150K is a subset
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(a) (b) (c)

Fig. 7 Illustration of data partition in our experiments. a ImageNet-
150K with 1000 categories, b CFW-60K with 500 categories. The sizes
of each set are presented in the figure, and the numbers in the brackets
indicate the number of images from each category. c The label infor-
mation of the corresponding sets. Best viewed in color (Color figure
online)

of ILSVRC 2012 dataset Russakovsky et al. (2015) with
150,000 images. For each of the 1000 categories, we select
148 images from the training set and 2 images from the val-
idation set. After that, 48 out of the 148 selected training
images for each category and all the 2000 selected validation
images are manually annotated with 25 attributes (including
color, texture, shape, material, and object parts).We partition
the dataset into 4 parts (Train-Category, Train-Both, Train-
Attribute, andTest) as illustrated inFig. 7a. (2)CFW-60K (Li
et al. 2015) is a subset of the CFWdataset (Zhang et al. 2012)
and contains 60,000 images of 500 subjects, among which
20 images of each subject are annotated with 14 attributes.
For the 10,000 images with attribute annotations, 10 images
of each subject are used as Test set, and the rest are fur-
ther divided into two parts (Train-Both and Train-Attribute)
similarly as ImageNet-150K. The details of partitioning is
illustrated in Fig. 7b. Please refer to the original publications
(Zhang et al. 2012; Li et al. 2015) for more details about this
dataset. On both datasets, the category labels of the Train-
Attribute set are made unavailable in the training stage to
serve as partially labelled data.

Evaluation protocol: All the evaluations are carried out
solely on theTest set in a leave-one-outmanner, namely, each
time we select one image from the Test set as query image,
and the rest as database. We report the average retrieval per-
formance of all Test set images. Since the three retrieval tasks
are very different from each other, we use different evaluation
metrics for these tasks.

Category retrieval: we use the standard mean Average
Precision (mAP) of retrieval as the metric, where database
images with the same category label as the query image are
considered as relevant.

Attribute retrieval: we consider the case when the user
selects at most three attributes in retrieval. For each possible
one-/two-/three-attribute selection, we compute the average
retrieval mAP over all valid attribute combinations (e.g. a
possible selection of two attributes is “red + blue”, and the
valid case combinations over these two attributes are “red and
blue”, “red and not blue”, “not red and blue”, and “not red
and not blue”), and we use the average results on all possible

selections to measure the overall retrieval performance. In
this experiment, database images that match with the query
image at all selected attributes are considered as groundtruth
matches. Note that we use the predicted attributes of all
images (both query and database) for ranking as described in
Sect. 3.5, while evaluate by the groundtruth annotations. As
a result, both wrong predictions of the query image and the
database images would result in poor performance.

Combined retrieval: considering that the combined retrieval
task is much more difficult than the other two tasks, we use
the less strict recall@k metric to measure the performance.
For each attribute, we compute themean recall@k metric on
all valid query images (images that have at least one match in
the database), and use the average on all attributes tomeasure
the retrieval performance of the combined retrieval task.

Implementation details: Although we have exploited
partially labelled data in the training stage, our datasets are
still relatively small in terms of training a deep CNN model
from scratch. In consideration of generalization ability, the
model parameters are initialized using pre-trainedCNNmod-
els. Specifically, for ImageNet-150K, we use the publicly
available AlexNet (Krizhevsky et al. 2012) model provided
in the model zoo of Caffe (Jia et al. 2014) unless otherwise
specified. The pre-trained model parameters from the conv1
layer to the fc7 layer are used to initialize our models. For
CFW-60K, we adopt the CNN structure of Yi et al. (2014)
(from conv1 to pool5). Since the pre-trained model is not
publicly available onCFW-60K,we follow the original publi-
cation (Yi et al. 2014) to train themodel, except for removing
the contrastive loss for simplicity. For fair comparison, all
comparative methods use the same pre-trained model as our
method.

For both datasets, the model is trained for 150,000 iter-
ations. We set the initial learning rate to 10−3 for the
pre-trained layers, and 10−2 for the newly added layers. The
learning rate is multiplied by 0.1 for every 60,000 iterations.
To train the model, we use a mini-batch size of 128, where
64 images are sampled from the Train-Attribute subset and
the other 64 images are from the rest parts of the training set
using the class-aware sampling strategy in Shen et al. (2016).
Namely, the 64 images with category labels are uniformly
sampled from 16 distinct categories to ensure the balance
between different categories as well as enough valid triplets
for the metric learning loss. Moreover, the margin parameter
m for the metric learning loss is empirically set to 4. The
momentum and weight decay parameters are set according
to the original publications (Krizhevsky et al. 2012; Yi et al.
2014). Besides, we first set α = 0, and compute the category
retrieval mAP of this model. After that, the value of α is grad-
ually increased, until the category retrievalmAP significantly
drops. Finally, we select the largest α value with acceptable
category retrieval mAP in the experiments, i.e. α = 0.1. All
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Table 1 The retrieval performance of models trained with different
combinations of loss functions. Cat., Attr., andCom. represent category,
attribute, and combined retrieval tasks respectively

Loss ImageNet-150K CFW-60K

Cat. Attr. Com. Cat. Attr. Com.

cls + wsce 0.353 0.834 0.732 0.439 0.991 0.384

cls + hinge 0.323 0.762 0.491 0.347 0.987 0.296

ml + wsce 0.322 0.816 0.672 0.402 0.989 0.328

ml + hinge 0.326 0.738 0.470 0.405 0.990 0.311

The results are obtained with 256-bit binary codes. For the category
and attribute retrieval tasks, the reported results are mAP, and for the
combined retrieval task, the performance metric is recall@5

the comparison CNN methods are implemented with Caffe
(Jia et al. 2014).1

4.2 Module Analysis

In this section, we conduct extensive experiments to validate
the effectiveness of the individualmodules of our framework,
and give insights into the working mechanism of encoding
multiple types of information.

4.2.1 Evaluation of Different Combination of Loss Functions

We have described two feasible loss functions for encoding
both types of information. In this part, we thoroughly eval-
uate all four combinations of these loss functions. For this
purpose, we train hashingmodels that produce 256-bit binary
codes using different loss combinations, and report the per-
formances of the corresponding models on all three retrieval
tasks. Specifically, for the combined retrieval task, we use
recall@5 as the performance metric in this experiment. The
results are shown in Table 1. We can see that the combina-
tion of classification loss (for encoding category information)
and weighted sigmoid cross entropy loss (for encoding
attribute information) gives the best results. Although the two
newly-introduced losses did not yield the highest accuracy,
their performances are still competitive. Specifically, the
performances of these models outperform some of the state-
of-the-art methods in the following experiments. Therefore,
we can confidently conclude that DPH is compatible with
different loss functions, and it is quite feasible to improve
the performance of DPH by designing/incorporating more
well-suited loss functions and training schemes.

Compared with the classification loss, metric learning
based loss functions are difficult to train. Even though we
have explicitly designed the mini-batch sampling strategy
to incorporate more valid image triplets, a large percentage

1 The source code ofDPH and the ImageNet-150K dataset are available
at “http://vipl.ict.ac.cn/resources/codes”.

of possibly beneficial triplets are not sampled, which results
in suboptimal performance of the corresponding models on
category-related tasks. On the other hand, by taking a closer
look at the two attribute-oriented loss functions, we have
found that the hinge loss tends to predict most samples as
the larger class even though the loss function is designed
to ignore some of the well-classified samples, and thus the
hinge loss results in inferior performance. Based on the above
results, we will use classification loss with weighted sigmoid
cross entropy loss in the following experiments.

In our current framework, there are no explicit constraints
on the quantization loss of the binary-like codes. In this sub-
section, we also conduct experiments to show the impact
of quantization loss on DPH. For this purpose, two sets of
experiments are conducted on ImageNet-150K and CFW-
60K with 256-bit binary codes: (1) to show the impact of
quantization loss on predicting the attributes, we use the real-
valued binary-like codes instead of the binary ones to predict
the attributes. The corresponding performances of attribute
retrieval and combined retrieval tasks on both datasets are
evaluated. (2) To show the impact of quantization loss on
the binary codes, we evaluate the performances of binary-
like codes on the category retrieval task on ImageNet-150K
and CFW-60K datasets with 256-D real-valued codes, and
compare the performanceswith the real binary codes. Specif-
ically, we replace the Hamming distance with Euclidean
distance to characterize the similarity between samples.

The results are shown in Table 2. Moreover, we also pro-
vide the distribution of the real-valued binary-like codes (all
bits) on theTest set of both datasets in Fig. 8.Weobserve from
Table 2 that the quantization loss only hasmarginal impact on
the retrieval performances, validating that DPH can achieve
satisfactory performance without explicit quantization loss.
In fact, as shown in Fig. 8, the real-valued binary-like codes
have small quantization losses even without explicit con-
straints. A possible explanation is that the sigmoid activation
function has large gradients in the linear region and small gra-
dients in the saturation regions. As a result, samples that fall
in the linear region are likely to be pushed to the saturation
region. On the contrary, once a sample falls in the saturation
region, it is difficult to be pushed back to the linear region
due to the small gradient values. Therefore, as the training
goes on, most samples fall in the saturation region and have
small quantization losses.

4.2.2 Evaluation of Partially Labelled Data

In this part, we evaluate the impact of utilizing partially
labelled data on both datasets by testing on 256-bit binary
codes. For this purpose, 6 models are trained with differ-
ent training sets: we name these models as Both (B), Both
+ Attribute (B + A), Both + Category (B + C), and Both +
Attribute + Category (B + A + C) according to the training
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Table 2 The impact of quantization loss on DPH

Task ImageNet-150K CFW-60K

Before After Before After

Category Retrieval 0.353 0.355 0.457 0.439

Attribute Retrieval 0.814 0.814 0.991 0.991

Combined Retrieval 0.713 0.713 0.384 0.382

The performances on the three retrieval tasks before and after quantiza-
tion are given in the table. For the category and attribute retrieval tasks,
the reported results are mAP, and for the combined retrieval task, the
performance metric is recall@5

(a) (b)

Fig. 8 Distribution of the 256-bit real-valued binary-like codes (all bits)
on the test set of a ImageNet-150K and b CFW-60K datasets

sets (please refer to Sect. 4.1 and Fig. 7 for details) used to
train the specific model. Moreover, we also conduct exper-
iments of training the DPH model with varying ratios of
partially labelled data to show the impact of training sample
number. Specifically, we randomly select 50% images from
the Train-Category subset to form an additional training sub-
set, which is denoted as 0.5C. Similarly, a 0.5A subset is
randomly selected from the Train-Attribute subset. Based on
the additional training subsets, two DPH models are trained
with B + 0.5C and B + 0.5A respectively. In this subsec-
tion, the encoding of category and attributes are evaluated
separately. For the category part, we use the retrieval mAP
as a measurement. For the attribute part, we adopt a more
straightforward metric to denote the attribute encoding per-
formance, i.e. the average harmonic mean of TPR and TNR
over all attributes, where TPR and TNR denote true positive
rate and true negative rate respectively. Note that since some
attributes are highly unbalanced, e.g. more than 98% images
do not possess the attribute “orange” in ImageNet-150K, this
metric can more faithfully reflect the real attribute prediction
performance than the flat sample-wise accuracy.

The comparison results are given in Table 3. We can infer
that:First, comparedwith the “Both”model, exploiting extra
training data (B + A and B + C) significantly improves
the performance of the corresponding task. This observa-
tion can be explained by model overfitting, to be specific, in
our experiments, in the training stage of the “Both” model,
the training loss approaches zero while the test loss only
decreases slightly. In contrast, when additional training data

Table 3 Comparison of the 256-bit models trained with different com-
binations of training data

ImageNet-150K CFW-60K

mAP average HM mAP average HM

B 0.268 0.825 0.180 0.858

B + 0.5A 0.266 0.881 0.177 0.889

B + A 0.264 0.878 0.179 0.899

B + 0.5C 0.322 0.850 0.369 0.856

B + C 0.363 0.848 0.445 0.870

B + A + C 0.355 0.886 0.439 0.911

The mAP of the category retrieval task and the average harmonic mean
of TPR and TNR over all attributes (average HM) are shown in the
table. B: Both, A: Attribute, C: Category, where 0.5A and 0.5C are
50% samples randomly selected from A and C respectively

is introduced, the training loss and test loss of the correspond-
ing tasks are always on the same scale as normally expected.
This justifies our motivation of using partially labelled data
in training the CNN models to alleviate overfitting. Sec-
ond, models trained with fewer partially labelled data (B
+ 0.5A and B + 0.5C) achieve better performance than the
“B” models on the corresponding tasks, yet they generally
underperform the “B + C” models and have similar perfor-
mances with the “B +A”models. One possible explanation is
that as a mid-level image representation, the attribute infor-
mation is less abstract and is easier to learn than the category
information, and thus the model could learn to well encode
the attribute information from a smaller amount of data. The
above results also suggest that DPH can efficiently make use
of the partially labelled data in the training stage to encode
the two kinds of information. Third, compared with train-
ing solely on “Train-Both” set, using all training data can
improve the performance on both tasks by a large margin
(the row “B + A + C” in Table 3), and the performance of
this dual-purpose model is comparable with or even better
than the performances of the “B + A” and “B + C” models
on the corresponding tasks, confirming that it is feasible to
simultaneously embed category and visual attributes into the
binary codes by exploiting partially labelled data. Fourth,
using more images with attribute annotations in the training
stage slightly degrades the category retrieval performances
(“B + A + C” vs. “B + C”). A possible explanation is that
encoding the category information requires suppressing the
within-class variation (including the attribute variation), and
vice versa. As a result, the two types of information are
actually competing for the limited information capacity of
binary codes. However, the additional attribute data and task
endow the DPH method with the ability of attribute-oriented
retrieval, which is not possessed by existing hashing meth-
ods, at the cost of only a marginal drop in category retrieval
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task. In the following experiments, all our models are trained
with the “B + A + C” setting.

4.2.3 Evaluation of More Advanced Backbone Architecture

Many recent works have shown that different layers in CNN
models extract semantic information at different abstraction
levels (Escorcia et al. 2015; Zhong et al. 2016; Bau et al.
2017). For example, the lower layers usually capture tex-
tures or object parts, while the higher layers characterise
task-specific features. Considering that our framework aims
at encoding both high- and low-level semantics (category
and attributes), it would be beneficial to make use of image
features from multiple different CNN layers. To this end,
inspired by the skip-layer connections proposed by He et al.
(2016), which naturally enables information flow between
different CNN layers, we replace the backbone network with
the 18-layer ResNet model and evaluate the retrieval per-
formance accordingly. Specifically, the last fully connected
layer of the pre-trained ResNet-18 model (pre-trained on the
ILSVRC 2012 (Russakovsky et al. 2015) object recognition
task) is replaced with the dual purpose hashing module as
described in Sect. 3. The model is trained for 50,000 itera-
tions with the same initial learning rate as described above,
and the learning rate ismultiplied by 0.1 for every 20,000 iter-
ations.Moreover, theweighting parameterα is set identically
to the above AlexNet model (α = 0.1) for fair comparison.
Since the ResNet-18 model is trained for general object clas-
sification instead of face recognition task, we only compare
the results on ImageNet-150K and use 256-bit binary codes
for evaluation.

Figure 9 shows the comparison results of the two back-
bone networks on the three retrieval tasks.We can see that the
ResNet-18 counterpart achieves much higher retrieval per-
formances on the category retrieval and combined retrieval
tasks, while the AlexNet-based model performs better on
the attribute retrieval task. A possible explanation is that
the ResNet-18 model achieves better object classification
accuracy than AlexNet, which suggests that ResNet-18
can better suppress the within-class variations (including
attributes) than AlexNet. As a result, the feature representa-
tions extracted by ResNet contains less attribute information,
and thus performs inferior to AlexNet on the attribute
retrieval task while outperforms the AlexNet-based model
on the other two category-related tasks. Considering that
the number of images with attribute labels is very small
compared to the ILSVRC 2012 training set, it is difficult
to change the knowledge that has already been learned in
the pre-training stage with such a small number of attribute
labels.However, ifwehavemore imageswith attribute labels,
it is likely that we can obtain a ResNet-18 model that out-
performs the AlexNet-based one on all three tasks, yet it is
beyond the scope of this paper.

Fig. 9 Comparison of our proposed DPH method with AlexNet and
ResNet-18 as the backbone network respectively. The retrieval mAP of
category retrieval and attribute retrieval tasks as well as the recall@5
metric of the combined retrieval tasks are reported
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Fig. 10 Analysis of the functionality of each individual bit, where the
x axis and y axis correspond to the normalized category and attribute
information metrics respectively. Each bit is represented by a circle in
the graph. a Results on ImageNet-150K. b Results on CFW-60K

4.2.4 Analysis of Bit Functionality

In this part, we analyse the functionality of each individual
bit to give more insights into the working mechanism of our
method. For this purpose, we use the method described in
Sect. 3.6 with 256-bit binary codes to quantitatively analyse
the amount of task-specific information carried by each bit
on both datasets.

The results on two datasets are shown in Fig. 10, and the
correlation coefficients between the two types of informa-
tion are 0.2661 and 0.4756 on the two datasets respectively.
Such results suggest that the two types of information are
somehow correlated. Namely, the amount of attribute infor-
mation carried by a certain bit is more or less dependent on
the amount of category information carried by that bit. Note
that on the CFW-60K dataset, there are more attributes that
are consistent within each class (e.g. gender and race), and
thus the two types of information have stronger correlation
on that dataset.

Figure 11 shows the alignment between attributes and cat-
egory v, against the correlation coefficients between attribute
information and category information cattr as described in
Sect. 3.6.Weobserve from the figure that these two indicators
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Fig. 11 The alignment between attributes and category, against the
correlation coefficients between attribute information and category
information. Each circle corresponds to an attribute

are strongly correlatedwithPearson’s coefficients 0.6079and
0.7412 on the two datasets respectively. Such result suggests
that the stronger an attribute is aligned with the categories,
the more likely that this attribute’s information is encoded in
the same bits as the category information.

4.3 Comparison with State of the Arts

In this part, we compare our proposed method with state-of-
the-art methods on the three retrieval tasks.

4.3.1 Evaluation of Category Retrieval

First, we test the effectiveness of our DPH method on the
category retrieval task. Apart from the object dataset and the
human face dataset (ImageNet-150K and CFW-60K), in this
experiment, we also evaluate all comparative hashing meth-
ods on onemore dataset to better validate the effectiveness of
the proposed DPHmethod. Specifically, we select a different
scenario (i.e. scenes) and combine the SUN397 dataset (Xiao
et al. 2010) with the SUN Attribute dataset (Patterson et al.
2014) for experiments, which is denoted as SUN-120K. The
SUN397 dataset has 108,754 images of 397 distinct scene
categories, and there are 14,140 images of 717 scene cate-
gories in the SUN Attribute dataset (20 images per category,
where each image is labelledwith 102visual attributes).After
removing the duplicate images, there are about 120K images
left in the combined dataset. Among the two datasets, there
are 395 overlapped scene categories. We randomly select 10
images from each of the 395 categories to test the model
performances (3,950 images in total).

We compare with nine hashing methods: LSH (Gionis
et al. 1999), ITQ (Gong and Lazebnik 2011), CCA-ITQ
(Gong and Lazebnik 2011), DBC (Rastegari et al. 2012),
KSH (Liu et al. 2012), SDH (Shen et al. 2015), DNNH (Lai
et al. 2015), HashNet (Cao et al. 2017), and SSDH (Yang
et al. 2015), including representative conventional methods
as well as state-of-the-art CNN-based methods.

For fair comparison, the conventional methods are trained
using L2-normalized CNN features extracted from the pre-

trained models (described in Sect. 4.1). Specifically, on
SUN-120K dataset, the 4,096-D features extracted from the
penultimate fully-connected layer of theCNNmodel inWang
et al. (2015) are used as feature inputs, and the above CNN
model is also used to initialize the model parameters for deep
hashingmethods. The comparativemethods are implemented
using the source codes provided by the original authors.
Specifically, for the CNN-based methods, i.e. DNNH, Hash-
Net, and SSDH, we adopt the same backbone network as our
DPH method, and initialize the model parameters with the
identical pre-trained models as ours.

All the comparative methods are trained using the com-
bination of “Train-Both” and “Train-Category” sets (on
SUN-120K dataset, all but the test images are used to train
the models). Moreover, since KSH demands a large amount
of memory to store the kernel matrix (O(N 2), where N is
the number of training images), we use 20,000 images ran-
domly selected from the training set for this method, which
has already consumed more than 16GB of memory in the
training stage. All the hyper-parameters of the comparative
methods are tuned carefully according to the original pub-
lications. The results on {32, 64, 128, 256}-bit binary codes
are given.

The results are shown in Table 4. We can see that: First,
when equipped with CNN features, the linear and non-linear
conventional methods (e.g. CCA-ITQ vs. KSH) have similar
performances. One possible explanation is that the CNN has
mapped the images to a feature space where different cate-
gories are already linearly separable, thus non-linearmethods
such as KSH can hardly benefit from the non-linearity of
kernel space. Second, CNN-based methods significantly
improve over conventional methods on CFW-60K and SUN-
120K, yet have marginal improvement on ImageNet-150K.
Note that the pre-trained models on CFW-60K and SUN-
120K are obtained from a different dataset (Webface (Yi
et al. 2014) and MIT Places (Zhou et al. 2014) respectively),
while on ImageNet-150K from the same one, validating the
advantage of CNN-based methods in learning more suitable
representations for the data at hand. Third, metric learn-
ing based deep hashing methods (DNNH and HashNet2)
perform relatively worse than classification-based methods
(SSDH and DPH). A possible explanation is that the met-
ric learning based methods need abundant valid training
image pairs/triplets for effective training, while the com-
monly adopted mini-batch sampling strategies (e.g. random
sampling or the class-aware sampling in our method) cannot
perfectly satisfy such requirements when the number of cate-
gories is large. Such sampling strategies could be a potential
research direction for these methods, yet they are beyond

2 With the source codes released by the original authors, dozens of
HashNet models under different hyperparameter settings are trained
and the best results among these models are reported.
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Table 4 Comparison of category retrieval performance (mAP) of our method and other comparative hashing methods on ImageNet-150K, CFW-
60K, and SUN-120K

ImageNet-150K CFW-60K SUN-120K

32-bit 64-bit 128-bit 256-bit 32-bit 64-bit 128-bit 256-bit 32-bit 64-bit 128-bit 256-bit

LSH Gionis et al.
(1999)

0.070 0.134 0.215 0.269 0.110 0.117 0.118 0.118 0.094 0.153 0.196 0.225

ITQ Gong and
Lazebnik (2011)

0.167 0.235 0.284 0.310 0.058 0.079 0.112 0.135 0.195 0.225 0.245 0.256

CCA-ITQ Gong
and Lazebnik
(2011)

0.157 0.223 0.294 0.341 0.069 0.090 0.113 0.140 0.162 0.229 0.285 0.318

DBC Rastegari
et al. (2012)

0.264 0.308 0.344 0.369 0.060 0.072 0.099 0.129 0.263 0.298 0.321 0.337

KSH Liu et al.
(2012)

0.181 0.253 0.293 0.320 0.063 0.086 0.111 0.117 0.182 0.230 0.262 0.298

SDH Shen et al.
(2015)

0.143 0.222 0.288 0.322 0.049 0.095 0.140 0.183 0.216 0.259 0.287 0.302

DNNH Lai et al.
(2015)

0.147 0.213 0.267 0.298 0.163 0.259 0.348 0.402 0.145 0.192 0.227 0.250

HashNet Cao
et al. (2017)

0.194 0.226 0.257 0.275 0.121 0.202 0.274 0.322 0.220 0.245 0.262 0.269

SSDH Yang et al.
(2015)

0.263 0.310 0.339 0.357 0.262 0.343 0.409 0.449 0.381 0.394 0.394 0.372

DPH 0.274 0.322 0.343 0.355 0.247 0.329 0.400 0.439 0.360 0.383 0.378 0.377

the scope of this paper. Moreover, HashNet is too strict with
dissimilar image pairs (i.e. the binary codes of dissimilar
images should be as different as possible). Considering that
there are many visually similar categories in our datasets,
such strict constraints significantly increase the difficulty of
model training and thus possibly cause the unsatisfactory
performances of HashNet on our datasets. In practice, the
classification-based methods require groundtruth category
labels, while the metric learning based methods only take
advantage of similar/dissimilar information, which might be
easier to obtain. Even though, by comparing Tables 1 and 4,
DPH can also use such labels, and the corresponding perfor-
mances are comparable with or even better than DNNH and
HashNet, suggesting that the proposed framework is a gen-
eral one. Fourth, although the binary codes in our method
are learned for jointly encoding two kinds of information, the
performance of DPH is still among the top of all methods,
indicating that our dual purpose hash codes are competent to
fulfil the first individual task, i.e. category retrieval. Note that
the SSDH method is trained with the classification loss sim-
ilarly as DPH, and an additional quantization loss is also
adopted in SSDH to further improve the retrieval perfor-
mance of binary codes. Therefore, the SSDH method could
be seen as an approximation of the classification-loss-only
version of DPH. As shown in Table 4, SSDH and DPH have
similar performances on the category retrieval task, which
further validates that the DPH model is competitive in the
category retrieval task. More importantly, the SSDH model

(a)

(b)

Fig. 12 Comparison of attribute retrieval performances (average mAP)
of our method and other comparative methods on a ImageNet-150K
and b CFW-60K. Note that SVM-real and CNN-attribute do not use
binary codes as features, and thus their performances do not vary with
code lengths
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Fig. 13 Some real retrieval cases of the attribute retrieval task on both
datasets. Here the “Test” set are used as queries, and the “Train-Both”
set and “Train-Attribute” set are used together as database, which is a
little different from the evaluation metrics. The selected attributes on
ImageNet-150K are listed next to the query image, while the selected

attributes on CFW-60K are gender, age, and race. Top-5 and Bottom-5
feedbacks are shown in the right part of the figure respectively. The
notations here are consistent with Fig. 1. Best viewed in color (Color
figure online)
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could only perform the category retrieval task, verifying
the advantage of DPH in simultaneously dealing with more
diverse retrieval tasks.

4.3.2 Evaluation of Attribute Retrieval

Here we test on the second task in Sect. 1, i.e. attribute
retrieval. We compare with three state-of-the-art methods for
the attribute prediction part of retrieval: (1) Similar to Kumar
et al. (2008), we train linear SVMs to predict attributes (we
have found that the performance of linear and kernel SVMs
are almost the same, thus we use linear SVMs for efficiency),
using the sameCNNfeatures as described inSect. 4.3.1. Then
the prediction scores are normalized to [0, 1] using sigmoid
function. We denote this method as SVM-real, where “real”
indicates that the models are trained on real-valued features.
Although (Kumar et al. 2008) is proposedmore than ten years
ago, it is still a competitive non-deep attribute prediction
method. More importantly, Kumar et al. (2008) separately
predicts the binary attributes similarly to our method. There-
fore, we choose this baseline method instead of the more
advanced ones (e.g. Siddiquie et al. 2011; Sadovnik et al.
2013) for fair comparison. (2) We replace the CNN fea-
tures in SVM-real with the 256-bit binary codes produced
by SSDH in Sect. 4.3.1, which has the best performance
among the comparative methods on the category retrieval
task. This baseline is used to evaluate the necessity of jointly
learning to encode the category and attribute information.
We denote this method as SVM-binary. (3) We finetune
the pre-trained CNN models to predict the attributes. For
this purpose, we modify our network structure by directly
adding the weighted sigmoid cross entropy loss (Sect. 3.3)
after the feature extraction backbone network, which could
be seen as an approximation of the attribute-loss-only ver-
sion of DPH. We denote this method as CNN-attribute. All
comparative methods are trained using the combination of
“Train-Both” and “Train-Attribute” sets. The results with
{16, 32, 64, 128, 256}-bit binary codes are reported.

The results are given in Fig. 12.We can observe that:First,
the performances of our 256-bit binary codes are comparable
to or even better than the baseline methods on both datasets.
Note that our method even surpasses SVM-real and CNN-
attribute, which are specially trained for attribute prediction
task, suggesting that the additional category information
might be helpful for the attribute learning task. Compared
with the baseline methods, our method does not need to store
the real-valued prediction scores, thus more storage-efficient
than SVM-real and CNN-attribute. Second, SVM-binary is
as compact as our method, yet achieves much inferior perfor-
mance than our method. This might be explained by the fact
that the binary codes learned by SSDH aims at encoding as
much category information as possible, and thus suppresses
the within-class attribute variations. As a result, the attribute

(a) (b)

Fig. 14 Comparison of combined retrieval performance (average
recall) of our method and other comparative methods on a ImageNet-
150K and b CFW-60K. The results are obtained with 256-bit binary
code. In this experiment, the “Multiple-model” baseline and our DPH
method achieve very similar results on ImageNet-150K, and thus their
corresponding curves (green and red curves respectively) highly overlap
(Color figure online)

information is lost and cannot be recovered from the 256-bit
binary codes learned by SSDH.

Some real retrieval examples on the attribute retrieval task
are provided in Fig. 13, where the selected attributes on
ImageNet-150K are listed next to the query image, and the
selected attributes on CFW-60K are gender, age, and race.
We can see that the top-ranked feedbacks (middle column)
well match the query image, while the least matched images
(rightmost column) have very different attributes compared
with the query image. Such results further validate the effec-
tiveness of our method in the attribute retrieval task.

4.3.3 Evaluation of Combined Retrieval

In this subsection, we evaluate on the third retrieval task in
Sect. 1, i.e. the combined retrieval task. Since this is a rel-
atively unexplored task, there are only a few methods that
can address this problem. We compare our DPH with two
baseline methods: (1) JLBC (Li et al. 2015), which can only
use the fully annotated “Train-Both” set to train the model.
We use the same CNN features as described above for this
method. (2) Multiple-model. This baseline consists of two
models, one for encoding each type of information, which
corresponds to enforcing somebits to totally characterize cat-
egory information and the others to characterize attributes.
Here we use CNN-attribute in Sect. 4.3.2 for attribute pre-
diction and SSDH (Yang et al. 2015) for Hamming distance
ranking. The SSDH model is trained to produce (k − p)-
bit binary codes, where k and p are the code length and
number of attributes respectively, and the predictions of
CNN-attribute are quantized to binary so that the storage
cost of this baseline is the same as our DPH method. The
experiments are conducted on 256-bit binary codes.

The results are shown in Fig. 14. We can see that: First,
although CNN features are used to train the JLBC model
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Fig. 15 Some real retrieval cases of the combined retrieval task on both
datasets. Here the “Test” set are used as queries, and the “Train-Both”
set and “Train-Attribute” set are used together as database, which is
a little different from the evaluation metrics. The query image and the

selected attribute are shown in the leftmost part of each row, and the cor-
responding top-10 feedbacks are given in the right part of each row. The
notations here are consistent with Fig. 1. Best viewed in color (Color
figure online)

on CFW-60K, due to the discrepancy between the Web-
face and CFW-60K datasets, the model performance is very
unsatisfactory on this dataset, which confirms that our end-
to-end framework is necessary for learning dual purpose hash
codes that match with the target database. Second, our pro-
posed DPH method performs on par with or better than the
“Multiple-model” method on both datasets. Note that our
method only needs one model to encode the two types of
information, while the “Multiple-model” baseline needs two

models.As a result, the “Multiple-model”method costs twice
as much time as our method when generating binary codes
and attribute predictions, validating the high efficiency of
our proposed method in real applications. More importantly,
if one choose to vary the number of bits for encoding the
two kinds of information, it is difficult to decide the neces-
sary number of bits for encoding each kind of information
before training, which inevitably further increases the dif-
ficulty in training a model that separately encodes category
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and attribute information in different bits. Such results fur-
ther validate the advantage of letting themodel automatically
decide the functionality of each individual bit over manually
deciding it.

We also provide some real retrieval results of the com-
bined retrieval task on both datasets in Fig. 15. The top-10
feedbacks aswell as their corresponding confidence levels on
the selected attributes are shown in the right part of the figure.
We can see that our model can successfully find the desired
images, and even the wrong feedbacks (e.g. the image with
a red bounding box in the first row) are very similar to the
desired ones, which further validates the effectiveness of the
proposed method in the combined retrieval task.

In the current framework, we use the predicted attribute
values to filter out some images and then sort the remaining
images by Hamming distance ranking. However, due to pos-
sible mistakes in attribute prediction, some of the relevant
images might be filtered out in the first stage, and it would
be impossible to successfully retrieve these images with the
current pipeline. To deal with this problem, in the future, we
would like to consider a soft filtering scheme, e.g. by weight-
ing the Hamming distance between samples via the attribute
prediction values.

4.4 Discussion

To sum up, our DPH method utilizes more supervised
information than those state-of-the-art methods specifically
designed for each individual task (i.e. category retrieval
and attribute retrieval), one thus naturally expects that DPH
should yield better performances on all tasks. However, as
we can see from the above experiments, some attributes
often vary significantly even within a single class (e.g.
color attributes of trucks), the additional attribute informa-
tion actually makes the learning of category more difficult.
Specifically, the methods designed for category retrieval task
mainly aim at suppressing such within-class attribute varia-
tions, while our dual purpose hash learning method aims
at simultaneously addressing two somehow controversial
goals, i.e. preserving the attribute variations and minimizing
the overall within-class variations. Even though, the perfor-
mances of our binary codes on the three retrieval tasks are still
very competitive, while the computation cost of our method
is much lower than training multiple models for these tasks,
indicating that jointly preserving both category and attribute
similarities for the three tasks is advantageous.

5 Conclusions

In this paper, we propose a method to learn hash functions
that simultaneously preserve category and attribute simi-
larities for multiple retrieval tasks. Our DPH method has

achieved very competitive retrieval performances against
state-of-the-art methods specifically designed for each indi-
vidual task. The promising performance of ourmethod can be
attributed to: a) The utilization of CNNmodels for hierarchi-
cally capturing correlation between categories and attributes
in an end-to-end manner. b) The loss functions specifically
designed for the partially labelled training data, which can
significantly improve the generalization ability of themodels.
Note that our framework is quite general, thus more power-
ful network structures and loss functions other than the ones
discussed in this paper can be easily incorporated to further
improve the performance.
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